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A control system of a cell-type cooling tower operation is proposed. Lyapunov's control system stability is 

proved. It is shown that due to use of the system for tower control and operation under the optimal regime 

the tower efficiency can be increased by several percent. 

Modernization of existing heat transfer equipment is of importance among different energy saving methods. The 
efficiency of heat transfer apparatuses can be substantially enhanced by using computer-aided control systems without making 

large capital expenditures. The control system problem is that when the operating conditions of the heat transfer apparatus are 
varied the course of processes must be kept under the optimal regime. 

The present article is concerned with the problem of mathematical modeling of a chimney-type tower control system 
[1, 2] under external aerodynamic actions. By these actions are understood either the wind around the tower or external air 

blowers used in combined towers [2], or both factors together. Inside the tower there can appear complex flows and 
stagnation zones that greatly affect circulating water cooling. As a result, at different positions in the tower water is not 
cooled uniformly at a given time. We will show that in passing from uniform irrigation to a nonuniform but optimal one the 
thermal efficiency of the tower can be increased. By altering the water distribution it is possible to conform to the varying 

operating conditions of the tower. 
Water cooling in the tower occurs by evaporation and convective heat transfer from a vapor-air mixture rising 

upwards under a lifting force. The vapor mass flowrate Qv within the framework of the macroscopic theory of liquid 
evaporation [1] can be given as 

Q =  s13 ( p -  Ps (T)), (1) 

where S is the interphase contact area;/3 is the mass transfer coefficient, dependent on a relative phase velocity; p and Ps are 

the vapor density and saturated vapor density, respectively. Expression (1) yields an interesting fact directly associated with 
the tower operation: there exists a limiting temperature T t, below which the liquid cannot be lost due to evaporation. 
According to (1), the quantity T t is determined from the equation 

ps (Tz ) = P (T) = Ps ( r )  ~, (2) 

where T and ~b are the temperature and the relative air humidity, respectively. Note [1] that above 90% of heat, the tower 

water is lost due to evaporation. 

Physical Model. At evaporative cooling there also exists a limiting temperature drop AT/ 

ATg = Tg --- To, (3) 

*Institute of Mathematics, Academy of Sciences, Republic of Belarus, Minsk. 

A. V. Lykov Heat and Mass Transfer Institute, Academy of Sciences, Republic of Belarus, Minsk. Translated from 

Inzhenerno-flzicheskii Zhurnal, Vol. 63, No. 6, pp. 678-683, December, 1992. Original article submitted February 26, 1992. 

1062-1025/92/6306-1187512.50 �9 Plenum Publishing Corporation 1187 



Fig. 1. Location of cells in the tower cross section. 

Fig. 2. Block diagram of the evaporative cooling tower 
control system. 
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Fig. 3. Efficiency of tower operation optimization 
vs the nonuniform temperature drop in the water 
basin. 

where T O is the temperature of water supplied to the tower for cooling. It is essential that the quantity AT t does not depend on 
the liquid spraying nature, tower design, and water flowrate, and is determined by the temperature and ambient air humidity, 
as well as by the initial water temperature. In a specific tower the temperature drop is 

A T  = Th  - -  To,  (4) 

where T k is the water temperature in the water basin and is affected by many factors. Under calm conditions, AT depends on 
ATt, the water mass flowrate Qb (water is supplied to the tower), and on the air flowrate Qa (air enters the tower through the 

windows) [2]. By using the Considerations of dimensionality theory [3], an expression for AT is written in the form 

AT = aTz F (QdQa), (5) 

where F is the dimensionless function of the flowrate ratio, is determined by the specific features of each tower, and can be 
found only experimentally. Note that the quantity 

n = AT/AT~ = F (Qb/Q~) 

serves as the thermal efficiency of the tower. In modern chimney-type towers r/lies within 0.2-0.4 [4]. 
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It is not difficult to establish a number of properties of the function F, proceeding from the a priori information about 

tower water cooling: 

a) due to the existence of AT~ it follows that for any water and air flowrate ratios 

0 • F <  1; (6) 

b) from the natural circumstance that when large quantities of water are being pumped through the tower the 

evaporation conditions deteriorate due to water vapor enrichment of the incoming air, the inequality is valid 

dF 
dQ~--~ "< O; (7) 

c) at last, when Qb/Qa ---" oo, we have 

F - ~ 0 .  
(8) 

By using (6)-(8) the function F cannot be determined uniquely; however, its approximation can be assumed accurate 

up to an unknown coefficient. The Pad6 approximant [5], which in our case is written as 

AT = ~T~ /(1 + AIC&/Qa), (9) 

is the simplest approximation of F that obeys conditions (6)-(8). The coefficient AI is easily found from the experimental data 

on the temperature and ambient air humidity, the water temperature in the water basin, and from the data on water and air 

flowrates in the tower. Let us make two comments on formula (9). In the general case, the correct writing would be, of 

course, of the form, with regard to (6)-(8), 

AT = aATs + A1Qb/Qa). 

However, as our calculations of heat and mass transfer in towers show, at small water flowrates, the quantity a from the 

previous formula is approximately equal to 0.9 (with the values of the remaining parameters being reasonable). Further, it 

will be assumed that a = 1; identification of the parameter AI in terms of natural measurements eliminates this inaccuracy. 

At last, if there are no changes in the air flowrate, which is valid for chimney-type towers, then (9) can be written as 

AT = ATs -b A1Qb), (lo) 

where the coefficient A~ is renormalized. Below we shall deal with expression (10). 

Tower Operation Optimization. When the wind velocity is greater than or equals the velocity of the vapor-air flame 

escaping from the tower, a rather complex space-nonuniform flow of the vapor-air mixture appears inside the chimney-type 

tower. It is known [6] that the tower efficiency ~ under these conditions decreases, as compared to calm conditions. Let us 

show that account of the nonuniform aerodynamic structures by a water supply cell distribution and by a control system 

enables one to elevate the tower efficiency. Let water be supplied to the tower through N ceils (Fig. 1) that allow water 

flowrate control, and the measuring system permits one to determine a water flowrate Qi and a temperature drop AT i in the 

i-th cell (i = 1 . . . . .  N). Then the mean-mass water temperature drop I, in the tower due to cooling is 

N 
= 1 '~ ATiQi, (11) 

Qb 

where 

N 

Qb = S~ Q~. (12) 
i = 1  
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Naturally, the water distribution in cells should be controlled so that the maximum of functional (11) must be attained, 

provided that 

N 

' ~  Q~ = Q = const. (13) 
i = 1  

The block diagram of the control system that provides the most admissible value of functional (11) is shown in Fig. 

2. The block ~o corresponds to the tower control object, I~ is the tower parameter identification block, ~2 is the computation 
block of optimal warm water flowrates, the block M is the mathematical model in form (10), and K is the control block of 

the system efficiency. This control is based on computing functional (11). The logic block L yields a signal of water fiowrate 
changes in cells up to the optimal flowrates Q~*, .... QN*. Use of expression (10) for each cell can give values of the 

parameters A~: 

Ai = AT~ - -A Te ,  i = 1, ..., N. (14) 
QihTi 

By using (14) it is easy to show that the optimal values of the warm water flowrates in the cells are determined by the 

formulas 

Qb 
N 

Ai ~7 A~ -1 (15) 
i ~ l  

In deriving (15) it has been assumed that at small deviations of the water flowrate the values of A i do not vary. 

For illustration of the potentials of the proposed control block diagram let us consider the simplest example. Let the 

water distribution system be subdivided into two cells and an equal amount of warm water be pumped through each cell. 

W h e n  affected by the wind, a nonuniform flow of the vapor-air mixture takes place inside the tower. As a result, the 

measured temperature drop in the first cell is AT~ = -1 0 ~  and in the second one, AT 2 = - 5 ~  (leeward side). The 

mean-mass temperature drop in this case is I = -7 .5~  Initial and external water cooling conditions are such that AT t = 

-20~  so that the efficiency of the first cell is r/ = 0.5. 

I{ the water flowrate is redistributed according to (15), then the optimal flowrate in the first cell is QI* = 0.75Qb, 

and Q2* = 025Qb. The optimal mean-mass temperature drop in this case is lop t = - 8 ~  and the temperature drop in each 

cell coincides with the optimal one. The generalized results of numerous calculations of flowrate optimization are plotted in 

Fig. 3. The ordinate axis is the initial mean-mass-to-optimal temperature drop ratio (with uniform water supply). The 

nonuniformity of temperature drops in the cells is conveniently characterized by the parameter DT: 

1 N 

It is natural that it" all cells operate under the same conditions, then DT = 0. The more nonuniform the measured temperature 

drop, the greater DT is and, as it follows from Fig. 3, the higher the optimization effect. 

Stability of Steady State Operating Conditions of the Evaporative Cooling Tower Control System. In virtue of 

inaccurate measurements and the approximate nature of expression (5) for optimal water flowrates in the cells, of great 

interest is the problem on Lyapunov's stability of the control system. This problem is studied in more detail in [7]; therefore, 

let us confine ourselves to the short description in this section. 

Let us consider the version of the distributed control when it is possible to make continuous tower perimeter 

measurements of warm water flowrates. Note that in practice, already at N >_ 8, the control can be considered distributed. 

Let q(~o) be the distribution function of the warm water flowrate around the tower perimeter, AT(~,) be the 

temperature drop, and ~o be the angular coordinate. Under the mentioned conditions the objective functional is of the form 

cI) = 1 _ i ~ AT (S) q (S) dS. (16) 
Qb 
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Under the constraint 

2 ~  

I" q(S) dS=Qa 

the maximum of functional (16) is attained on the next optimal distribution function of the warm water flowrate 

2$g 

I A,(SleS), 
'd 

where 

(17) 

A ( ~ ) =  A T s  
q(~) AT(~) 

"Optimal" temperature drops corresponding to (17) are calculated by the formula 

2 ~  

ar~ .[ A-~ (s) as 
0 == const AT* (~) = 2= 

j" A-I(S)dS+Qb 
0 

(19) 

From (19), the important result follows that under the steady-state optimal operating conditions the temperature drop 

of warm water is uniform around the tower perimeter and is consistent with the mean-mass optimal drop 'I'op t = AT*(,p), v,p 

E [0, 2~-]. 

Let us designate the temperature drop of warm water at a time moment kh through ATk0P), where h is the 

information reading period. 

Let us designate the optimal distribution of warm water flowrates on a time interval [kh, (k+ l)h] that satisfies 

ATk(,p ) through qk+l(~')- Substituting into (17), instead of the function A(,p), the result of its reconstruction by formula (19), 

we obtain the recurrence equation 

Qbq~ (~) ATh (q~) 

(aTz  - -  aT~ (~)) i q~ (S) AT,~ (S) (aTZ - -  aT~ (S))- ldS 

that describes the dynamics of the distribution function of the optimal warm water flowrates. 

It may be shown that the general solution to Eq. (20) is of the form 

q~ (~) = ~, Qak-1 (~) ah-2 (~) ... ao (q~) qo (~) 

j" an-1 (S) ah-2 (S) ... ao (S) qo (S) dS 
0 

where q0(S) is the initial warm water distribution; 

(20) 

(21) 

a1 (q~) = ATj (q~) , ] = 0, k - -  1. 
AT,~ - -  aT j  (q~) 

By using (21) it is not difficult to prove [7] Lyapunov's stability [8] of optimal regimes (17), (19) with respect to 

small disturbances of temperature drops and warm water flowrates. 
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CONCLUSIONS 

1. The mathematical model and the tower control scheme under external aerodynamic actions are developed and 
allow the thermal efficiency of the tower to be increased [1]. 

2. The controlling parameter necessary for tower control, DT, which is the rms deviation of the cooled water 

temperature measured in each cell from the mean-mass one, is found. 
3. Lyapunov's stability of the proposed tower cell-control is proved. 
4. By the results of the numerical calculations using the empirical data on the tower efficiency it is shown that use of 

the proposed control scheme may increase the tower efficiency by several percent, in other words, decrease the mean-mass 
water temperature approximately by 1 deg. 

NOTATION 

Q, and Qb, flowrates of air and cooled water in the tower; ,I,, mean-mass water temperature drop; T~, limiting 
temperature of evaporative cooling under assigned external conditions; DT, controlling parameter of the control system, i.e., 
rms deviation of the cooled water temperature from the mean-mass one; A i, heat and mass transfer parameter determined 

from the experimental data. 
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